Chapter 12 Solutions and Their Properties

The Solution Process

Solvated ions (or solute molecules) are surrounded and stabilized by a shell of solvent molecules.

Heats of Solution

exothermic ex. NaOH
endothermic ex. NH₄NO₃

energy of solvation interactions vs. lattice energy (forces holding solid together)

- Processes in which the energy content of the system decreases tend to occur spontaneously.
- Processes in which the disorder of the system increases tend to occur spontaneously.
- Formation of solutions is favored by the increase in disorder that accompanies mixing.

Variations in heats of solution due to interplay of three kinds of interactions.

- Solvent-solvent: positive ΔH_1
- Solute-solute: positive ΔH_2
- Solvent-solute: negative ΔH_3

$\Delta H_{\text{soln}} = \Delta H_1 + \Delta H_2 + \Delta H_3$
Solubility

saturation - solution in equilibrium with undissolved solid.

NaCl (s) in equilibrium with Na$^+$\textsubscript{(aq)} and Cl$^-$\textsubscript{(aq)}

\[
\text{Solute} + \text{Solvent} \xrightarrow{\text{dissolve}} \xrightarrow{\text{crystallize}} \text{Solution}
\]

Supersaturated solutions - contains a greater than equilibrium amount of solute.

Liquids in liquids
The stronger the attractions between solute and solvent molecules, the greater the solubility.

miscible vs. immiscible

miscible completely soluble in all proportions

- polar-polar (water-ethanol)
- nonpolar-nonpolar

immiscible polar-nonpolar (water-oil)

Solids in liquids
yes: in water - salts, sugar

- in benzene - (nonpolar) naphthalene

no: naphthalene will not dissolve in water

- sugar will not dissolve in benzene

Substances with similar intermolecular attractive forces tend to be soluble in one another; "like dissolves like"
Solution Composition

mole fraction, moles of species A divided by the total number moles

\[X_A \equiv n_A / n_{tot} = \frac{n_A}{n_A + n_B + n_C + \ldots} \]

molarity moles of A per liter of solution

\[M_A \equiv n_A / V \]

molality, m, of species B equals the number of moles of B divided by the mass of solvent, A, (kilograms of solvent)

\[m_B = \frac{n_B}{w_A (kg)} \]

weight percentage of species B,

\[(w_B / w) \times 100\% \]

Use density as a conversion factor between molality and molarity.

- find total mass of solution from molality.
- use density to find total volume of solution.
- divide number of moles (from molality) by volume of solution.
Pressure Effects

Henry's Law, the solubility of the gas increases in direct proportion to its partial pressure above the solution.

\[C_g = kP_g \]

\(C_g \) is solubility of gas \(k \) is Henry’s law constant
\(P_g \) is partial pressure of gas

Example: Determine the solubility of \(\text{H}_2\text{S} \) (g) at 0°C and a partial pressure of 18.9 mm Hg. \(k = 0.195 \text{ mol/L}\cdot\text{atm} \)

Temperature Effects

Most substances are more soluble at higher temperatures.

The solubility of gases in water decreases with increasing temperature.

Thermal pollution of lakes and streams.
Colligative Properties (dependent on the number of solute particles, not the identity)

Raoult's law

\[P_A = X_A P_A^\circ \]

solvent, A

“involatile solute” in a solvent, solid solutes, have a vapor pressure that is negligible.

This will not hold for liquid or gas solutes.

For solutions of two liquids, calculate the pressure of each liquid using Raoult's law.

\[P_T = P_A + P_B \]

\[P_T = X_A P_A^\circ + X_B P_B^\circ \]

Example: Assume you dissolve 10.0 g of sugar (C\textsubscript{12}H\textsubscript{22}O\textsubscript{11}) in 225 mL of water and warm the solution to 60°C. What is the vapor pressure of the water over this solution? The vapor pressure of water at 60° is 149.4 mm Hg.
Boiling-Point Elevation

\[\Delta T_{bp} = K_{bp}m_{solute} \]

Freezing Point Depression

\[\Delta T_f = K_{fp}m_{solute} \]

Molal boiling point elevation constant: K-kg/mol (°C/m)
Molal freezing point depression constant: K-kg/mol (°C/m)

Example: What will be the freezing point and boiling point of an aqueous solution containing 55.0 g of glycerol, \(\text{C}_3\text{H}_5(\text{OH})_3 \), and 250 g of water. For water, \(K_{bp} = 0.51 \) °C/m and \(K_f = 1.86 \) °C/m.
Osmotic Pressure

There is a natural tendency for the solvent to pass from the pure solvent chamber through the membrane into the solution chamber. The excess pressure that must be applied to the solution to produce equilibrium is known as osmotic pressure, \(\Pi \).

\[
\pi = MRT = \left(\frac{n}{V} \right)RT
\]

- \(\pi \) - osmotic pressure
- \(M \) - molar concentration of solute
- \(R \) - gas constant (0.082057 L atm/mol K)
- \(T \) - temperature in Kelvins

Example: Determine the osmotic pressure of a 0.075 M solution of aspartic acid at 18.5°C.

Ion Pairing

van't Hoff factor, \(i \), (number of ions in salt)

\[
i = \frac{\text{actual number of particles in soln after dissolution}}{\text{number of formula units initially dissolved in soln}}
\]

dilution

charge on ions

\[
\Delta T_b = iK_b m
\]

\[
\Delta T_f = iK_f m
\]

\[
\pi = iMRT
\]
Using change in bp or fp to find molar mass

- Divide the change in temperature by the freezing point depression constant or boiling point elevation constant. This should give the molality.

\[
\frac{\Delta T_{bp}}{K_{bp}} = m_{solute} \quad \frac{\Delta T_{fp}}{K_{fp}} = m_{solute}
\]

Use mass of solvent to determine the number of moles of solute

Divide mass of solute by moles of solute to find molar mass

Example: Crystals of azulene, 0.640 g, which has an empirical formula of C_5H_4, are dissolved in 99.0 g of benzene. The boiling point of the solution is 80.23°C. What is the molecular formula of azulene? The boiling point of benzene is 80.10°C. K_{bp} of benzene is +2.53 °C/m.

Using osmotic pressure

Divide osmotic pressure by RT to find concentration

\[\frac{\Pi}{RT} = C_B \]

Example: A 1.40 g sample of polyethylene is dissolved in enough benzene to give exactly 100 mL of solution. The measured osmotic pressure of the solution is 1.86 mm Hg at 25°C. Calculate the average molecular mass of the polymer.

Using vapor pressure

Divide lowered pressure by pressure of pure solvent to determine mole fraction of solvent, \(X_A \). Find mole fraction of solute by \(1-X_A=X_B \).
Colloids

Particles that are large on the molecular scales but are still small enough to remain suspended indefinitely in a solvent system.

- scatter light
- high molecular weight
- high surface area

<table>
<thead>
<tr>
<th>Dispersing Medium</th>
<th>Dispersed Phase</th>
<th>Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>gas</td>
<td>Liquid</td>
<td>aerosol</td>
<td>fog, mist</td>
</tr>
<tr>
<td>gas</td>
<td>Solid</td>
<td>aerosol</td>
<td>smoke</td>
</tr>
<tr>
<td>liquid</td>
<td>Gas</td>
<td>foam</td>
<td>whipped cream</td>
</tr>
<tr>
<td>liquid</td>
<td>Liquid</td>
<td>emulsion</td>
<td>mayonnaise</td>
</tr>
<tr>
<td>liquid</td>
<td>Solid</td>
<td>sol</td>
<td>milk of magnesia</td>
</tr>
<tr>
<td>solid</td>
<td>Gas</td>
<td>foam</td>
<td>plastic foams</td>
</tr>
<tr>
<td>solid</td>
<td>Liquid</td>
<td>gel</td>
<td>jelly, butter</td>
</tr>
<tr>
<td>solid</td>
<td>Solid</td>
<td>solid sol</td>
<td>certain alloys (steel), gemstones (glass with dispersed metal)</td>
</tr>
</tbody>
</table>