1. Balance the following reaction in acidic conditions (4 pt)

\[\text{NO}_3^- (aq) + Cu(s) \rightarrow NO(g) + Cu^{2+} (aq) \]

2. An electron in a hydrogen atom drops from the n = 6 to the n = 3 level.
 a. What is the **wavelength** of light emitted? (4 pt)
 b. What is the **energy** of this light in kJ/mol? (6 pt)
3. What is the deBroglie **wavelength** of a 300-g object moving at a velocity of 50 m/s (about 100 mph)? (4 pt)

4. What are the **four quantum numbers**, and give their names or what they indicate. (8 pt)
 a.
 b.
 c.
 d.

5. How many **orbitals** are in the following **subshells**: (6 pt)
 a. 5p
 b. 4f
 c. 3d

6. Give the electron configurations for the following (9 pt)
 a. As
 b. Pb
 c. Cr

7. What is an atomic orbital? (3 pt)
8. Give the value of \(l \) and the letter used to designate the orbital. (6 pt.)

\[\begin{array}{c}
\text{l value:} \\
\text{designated letter:}
\end{array} \]

9. Complete the following orbital diagram for carbon. (4 pt)

\[\begin{array}{ccc}
1s & & 2p \\
\ & \ & \ \\
\ & \ & \\
\end{array} \]

10. Indicate which is smaller in the following sets: (6 pt)
 a. \(\text{Cr}^{3+} \) or \(\text{Cr} \)
 b. \(\text{Se}^{2-} \) or \(\text{Se} \)
 c. \(\text{N}^{3-} \) or \(\text{O}^{2-} \)

11. Indicate which element has the higher first ionization energy (4 pt)
 a. \(\text{Si} \) or \(\text{S} \)
 b. \(\text{O} \) or \(\text{S} \)

12. Which element would have the higher (more negative) electron affinity (4 pt)
 a. \(\text{Mg} \ \text{Na} \ \text{Ne} \ \text{O} \)
 b. \(\text{B} \ \text{C} \ \text{Li} \ \text{Be} \)

13. Which compound will have the higher lattice energy (6 pt)
 a. \(\text{LiCl} \) or \(\text{NaCl} \)
 b. \(\text{NaCl} \) or \(\text{MgCl}_2 \)
 c. \(\text{AlCl}_3 \) or \(\text{MgCl}_2 \)

14. Give products for and balance the following reactions (8 pt)

\[\text{Na(s)} + \ H_2O(l) \rightarrow \]

\[\text{Na(s)} + \ O_2(g) \rightarrow \]
\[Li(s) + O_2(g) \rightarrow \]

\[Be(s) + Br_2(l) \rightarrow \]

15. What is the **generic** valence electron configuration of: (4 pt)
 a. halogen
 b. group 3A metal

16. Draw the Lewis structures for the following. Also, draw resonance structures where you can. (8 pt)
 a. SF\(_4\)
 b. PH\(_3\)
 c. NO\(_2^-\)

17. For the following Lewis structure, *calculate* the formal charges on all atoms. (6 pt)

\[
\begin{array}{c}
\text{O} \equiv \text{C} \equiv \text{N} \\
\text{O} \equiv \text{C} \equiv \text{N}
\end{array}
\]

For extra credit, can you draw a better resonance structure for the above compound? If so, why is yours better? (2 pt)