1. For each of the following single variable functions, find (i) \(\frac{dy}{dx} \) and (ii) the extreme values and indicate whether it is a maximum or minimum:

 (a) \(y = 9 - x^2 \)
 (b) \(y = 3x^3 - 2x - 39 \)
 (c) \(y = 8x^{1/2} - 4x + 2 \)

2. Consider the following implicit function, where \(y \) is the endogenous variable and \(x_1, x_2 \) are the exogenous variables.

\[
F(y; x_1, x_2) = \frac{1}{2} y - 2x_1 + 4x_1x_2 = 0
\]

Compute \(M_y/M_{x_1} \) and \(M_y/M_{x_2} \) using (i) the direct (explicit) approach and (ii) the implicit function approach.

3. Consider the following matrices:

\[
A = \begin{pmatrix} 6 \\ 3 \end{pmatrix}, B = \begin{pmatrix} -2 & 3 \\ -4 & 5 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 \\ 0 & 8 \end{pmatrix}, \text{ and } D = \begin{pmatrix} 0 & 1 & 4 \\ 3 & 2 & 0 \\ -1 & 1 & 0 \end{pmatrix}
\]

Compute the following (or indicate if they do not exist):

 (a) The determinants of \(A, B, C, \text{ and } D \)
 (b) \(A+B \) and \(B+C \)
 (c) \(BxA, BxC, \text{ and } BxD \)

4. Solve the following system of two equations and two unknowns by (i) direct method and (ii) Cramer’s Rule:

\[
\begin{align*}
 x_1 + 2x_2 &= 6 \\
 3x_1 - 2x_2 &= 10
\end{align*}
\]
5. Consider the following model of demand and supply. The endogenous variables are quantity \(Q \) and price \(P \) and let the exogenous variable be consumer income \(I \). The equilibrium \((Q,P) \) must satisfy the following functions:

\[
Q = D(P, I) = 3 + \frac{I}{P} \quad \text{(Demand Curve)}
\]

\[
Q = S(P, I) = 4P \quad \text{(Supply Curve)}
\]

Compute the impact of an exogenous change in \(I \) on the equilibrium quantity and price (i.e., \(\frac{dQ}{dI} \) and \(\frac{dP}{dI} \)) using Cramer’s Rule.

6. Find the extreme values of the following multi-variable functions:

(a) \(\max f(x_1, x_2) = 12x_1 - 4x_2 - 2x_1^2 + 2x_1x_2 - x_2^2 \)

(b) \(\min f(x_1, x_2, x_3) = 29 - (x_1^2 + x_2^2 + x_3^2) \)

7. Solve the following constrained optimization problems using (i) the chain-rule approach and (ii) the Lagrangian approach:

(a) Maximize \(U(x_1, x_2) = x_1x_2 + 2x_1 \) subject to \(4x_1 + 2x_2 = 60 \)

(b) Maximize \(f(x_1, x_2) = x_1x_2 \) subject to \(x_1 + x_2 = 6 \)